

1 Exploration of PM_{2.5} sources on the regional scale in the 2 Pearl River Delta based on ME-2 modeling

3

4 Xiao-Feng Huang¹, Bei-Bing Zou¹, Ling-Yan He¹, Min Hu², André S. H. Prévôt³, Yuan-Hang
5 Zhang²

6 ¹Key Laboratory for Urban Habitat Environmental Science and Technology, School of
7 Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055,
8 China.

9 ²State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
10 Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.

11 ³Paul Scherrer Institute (PSI), 5232 Villigen-PSI, Switzerland.

12

13 **Abstract:**

14 The Pearl River Delta (PRD) of China, which has a population of more than 58 million people, is
15 one of the largest agglomerations of cities in the world and ever experienced severe PM_{2.5}
16 pollution at the beginning of this century. Due to the implementation of strong pollution control in
17 recent decades, PM_{2.5} in the PRD has continuously decreased to relatively lower levels in China.
18 To comprehensively understand the current PM_{2.5} sources in the PRD to support future air
19 pollution control strategy in similar regions, we performed regional-scale PM_{2.5} field observations
20 coupled with a state-of-the-art source apportionment model at six sites in four seasons in 2015.
21 The regional annual average PM_{2.5} concentration was determined to be 37 µg/m³, which is still
22 more than three times the WHO standard, with organic matter (36.9%) and SO₄²⁻ (23.6%) as the
23 most abundant species. A novel multilinear engine (ME-2) model was then applied to the PM_{2.5}
24 dataset in the PRD to perform source apportionment with predetermined constraints, which
25 produced more environmentally meaningful results compared to those obtained using traditional
26 positive matrix factorization (PMF) modeling. The regional annual average PM_{2.5} source structure
27 was retrieved to be secondary sulfate (21%), vehicle emissions (14%), industrial emissions (13%),
28 secondary nitrate (11%), biomass burning (11%), secondary organic aerosol (SOA, 7%), coal
29 burning (6%), fugitive dust (5%), ship emissions (3%) and aged sea salt (2%). Analyzing the
30 spatial distribution of PM_{2.5} sources under different weather conditions clearly identified the
31 central PRD area as the key emission area for SO₂, NO_x, coal burning, biomass burning, industrial
32 emissions and vehicle emissions. It was further estimated that under the polluted northerly air flow
33 in winter, local emissions in the central PRD area accounted for approximately 45% of the total
34 PM_{2.5}, with secondary nitrate and biomass burning being most abundant; in contrast, the regional
35 transport from outside the PRD accounted for more than half of PM_{2.5}, with secondary sulfate
36 representing the most abundant transported species.

37

38 **Keywords:** source apportionment; ME-2; local emissions; regional transport; Pearl River Delta.

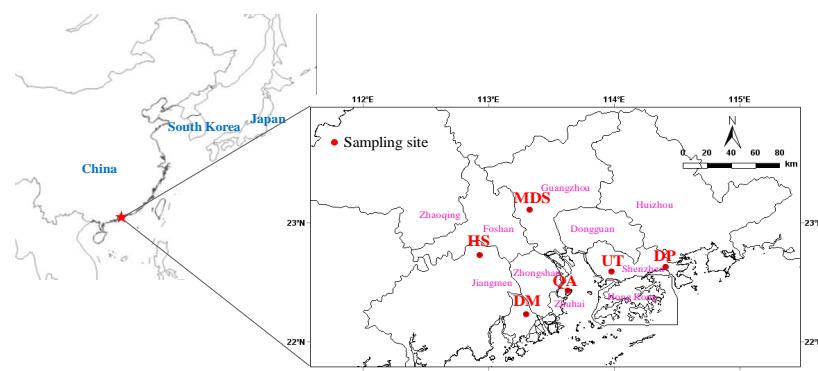
39 **1 Introduction**

40 With China's rapid economic growth and urbanization, air pollution has become a serious
41 problem in recent decades. Due to its smaller size, fine particulate matter (PM_{2.5}) can carry toxic
42 chemicals into human lungs and bronchi, causing respiratory diseases and cardiovascular diseases
43 that can harm human health (Sarnat et al., 2008; Burnett et al., 2014). In particular, long-term
44 exposure to high concentrations of fine particulate matter can also lead to premature death
45 (Lelieveld et al., 2015). The Chinese government has attached great importance to improving air
46 quality and issued the "Air Pollution Prevention and Control Action Plan" in September 2013,
47 clearly requiring the concentrations levels of fine particulate matter in a few key regions,
48 including the Pearl River Delta (PRD), to drop by 2017 from 15 to 25% of their values in 2012.
49 The Pearl River Delta is one of the fastest-growing regions in China and the largest urban
50 agglomeration in the world; it includes Guangzhou, Shenzhen, Zhuhai, Dongguan, Foshan,
51 Huizhou, Zhongshan, Zhaoqing and Jiangmen provinces and contains more than 58 million people.
52 The PM_{2.5} concentration in this region reached a high level of 58 µg/m³ in 2007 (Nanfang Daily,
53 2016); however, the air quality has significantly improved due to the implementation of strict air
54 pollution control measures, which occurred here earlier than in other regions in China. The annual
55 average concentration of PM_{2.5} in the PRD dropped to 34 µg/m³ in 2015 (Ministry of
56 Environmental Protection, 2016).

57 In recent years, the receptor model method (commonly, positive matrix factorization) in the
58 PRD was applied to perform the source apportionment of PM_{2.5}, which was carried out in several
59 major cities, including Guangzhou (Gao et al., 2013; Liu et al., 2014; Wang et al., 2016),
60 Shenzhen (Huang et al., 2014b), Dongguan (Wang et al., 2015b; Zou et al., 2017) and Foshan
61 (Tan et al., 2016). However, the above source apportionment studies only focused on part of PM_{2.5}
62 (e.g., organic matter) or lacked the extensive representation of the PRD. Since the lifetime of
63 PM_{2.5} in the surface layer of the atmosphere is days to weeks and the cities in PRD are closely
64 linked, the transport of PM_{2.5} between cities should be specifically noteworthy (Hagler et al.,
65 2006). On the other hand, although the positive matrix factorization (PMF) model has been
66 successfully applied to source apportionment in the PRD, the apportionment with PMF has high
67 rotational ambiguity and can output non-meaningful or mixed factors. Under such conditions, the
68 multilinear engine (ME-2) model can guide the rotation toward a more objective optimal solution
69 by utilizing a priori information (i.e., predetermined factor profiles). In recent years, ME-2,
70 initiated and controlled via the Source Finder (SoFi) written by the Paul Scherrer Institute, was
71 successfully developed to apportion the sources of organic aerosols (Canonaco et al., 2013). The
72 novel ME-2 model has become a widely used and successful source analysis technique (e.g.
73 Crippa et al., 2014; Fröhlich et al., 2015; Visser et al., 2015; Elser et al., 2016; Reyes-Villegas et
74 al., 2016).

75 Accurately understanding the regional characteristics of PM_{2.5} sources in the PRD can
76 certainly guide the regional joint prevention and control of PM_{2.5} in this region and provide useful
77 references for future air pollution control strategies in China. Thus, in this study, the PM_{2.5} mass
78 and chemical compositions were measured during four seasons in 2015 at six sites in the PRD,
79 which basically represent the pollution level of the PRD on a regional scale rather than on a city
80 scale. The novel ME-2 model via the SoFi was applied to identify the sources of PM_{2.5} in the PRD;
81 then, the spatial locations of the sources were systematically explored using the analysis of
82 weather conditions.

83 **2 Experimental methodology**


84 **2.1 Sampling and chemical analysis**

85 The PRD is located in south central Guangdong Province. Based on the layout of the cities in
86 the PRD, six sampling sites were selected to represent urban, suburban, and background sites.
87 Detailed descriptions of these sampling sites are listed in Table 1, and their locations are shown on
88 the regional map in Fig. 1.

89 **Table 1.** Description of the sampling sites in the PRD.

Site	Site code	Coordinates	Site description	
Doumen	DM	Lat: N 22.23 Lon: E 113.30	Suburban	Contains industrial areas
Qi-Ao island	QA	Lat: N 22.43 Lon: E 113.63	Background	An area for eco-tourism
Heshan	HS	Lat: N 22.73 Lon: E 112.93	Suburban	Contains industrial areas and farmlands
Modiesha	MDS	Lat: N 23.11 Lon: E 113.33	Urban	Contains dense urban traffic
University Town	UT	Lat: N 22.59 Lon: E 113.98	Urban	Contains urban traffic
Dapeng	DP	Lat: N 22.63 Lon: E 114.41	Background	An area for eco-tourism

90

91

92 **Fig. 1.** Spatial distribution of the sampling sites in the PRD.

93 Samples were collected every other day during the months of January–February (winter),
94 April (spring), July (summer) and October–November (fall) in 2015. Each sampling period lasted
95 for 24 h at each site. The sampling sites of University Town (UT) and Dapeng (DP) used Thermo
96 2300 PM_{2.5} samplers (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA, with a
97 flowrate of 16.7 L/min for two channels and a flowrate of 10.0 L/min for the other two channels),
98 while those in Modiesha (MDS), Heshan (HS), Qi-Ao Island (QA) and Doumen (DM) used
99 TH-16A PM_{2.5} samplers (Tianhong Corp., Wu Han, China, with a flow rate of 16.7 L/min for four

100 channels). Prior to the sampling campaigns, two different types of samplers sampled in parallel
101 yielded a relative deviation of less than 5% for $\text{PM}_{2.5}$ mass concentrations. The $\text{PM}_{2.5}$ mass can be
102 obtained based on the difference in the weight of the Teflon filter before and after sampling in a
103 cleanroom at conditions of 20°C and 50% relative humidity. Teflon filters were analyzed for their
104 major ion contents (SO_4^{2-} , NO_3^- , NH_4^+ and Cl^-) via an ion chromatography system (ICS-2500,
105 Dionex; Sunnyvale, California, USA), and their metal element contents (23 species) were
106 analyzed via an inductively coupled plasma mass spectrometer (ICP-MS, auroraM90; Bruker,
107 Germany). Quartz filters were analyzed for their organic carbon (OC) and elemental carbon (EC)
108 contents using an OC/EC analyzer (Desert Research Institute, Reno, Nevada, USA). The overall
109 organic mass (OM) was estimated as $1.8 \times \text{OC}$ (He et al., 2011).

110 The meteorological conditions during the observation period, shown in Table 2, indicated
111 that the PRD region experienced a hot and humid summer and a cool and dry winter, while spring
112 and fall were two transition seasons. Furthermore, the back trajectories of the air masses obtained
113 using the NOAA HYSPLIT model (Fig. S1) revealed that the air masses originated from the
114 northern inland in winter, from the northern inland and the South China Sea in spring, from the
115 South China Sea in summer, and from the northeast coast and the northern inland in fall.

116 **Table 2.** General meteorological conditions during the observation period in the PRD.

	Mean (°C)	Temp. (mm)	Rainfall (%)	Mean RH	Mean wind speed (m/s)	Predominant wind direction
Winter(Jan.10-Feb.9)	17	35	63%	2.1		ENE
Spring(Apr.2-Apr.30)	23	61	72%	1.8		SSW
Summer(Jul.1-Jul.29)	29	244	74%	2.1		SW
Fall(Oct.11-Nov.10)	25	92	68%	1.7		NNE

117

118 **2.2 Input data matrices for source apportionment modeling**

119 PMF is a multivariate factor analysis tool widely used for aerosol source apportionment. The
120 PMF algorithm groups the measured matrix \mathbf{X} (Eq. (1)) into two non-negative constant matrices \mathbf{G}
121 (factor time series) and \mathbf{F} (factor profiles), and \mathbf{E} denotes the model residuals (Paatero and Tapper,
122 1994). The entries in \mathbf{G} and \mathbf{F} are fitted using a least-squares algorithm that iteratively minimizes
123 the object function Q in Eq. (2), where e_{ij} are the elements of the residual matrix \mathbf{E} , and u_{ij} are
124 the errors/uncertainties of the measured species x_{ij} .

$$125 \quad \mathbf{X} = \mathbf{G} \bullet \mathbf{F} + \mathbf{E} \quad (1)$$

$$126 \quad Q = \sum_{i=1}^n \sum_{j=1}^m (e_{ij}/u_{ij})^2 \quad (2)$$

127 The multilinear engine (ME-2) was later developed by Paatero (1999) based on the PMF
128 algorithm. In contrast to an unconstrained PMF analysis, ME-2 can utilize the constraints (i.e.,
129 predetermined factor profiles) provided by the user to enhance the control of rotation for a more
130 objective solution. One or more factor profiles can be expediently input into ME-2, and the output
131 profiles are allowed to vary from the input profiles to some extent. When using ME-2 modeling,
132 the “mixed factors” can usually be better resolved.

133 In this study, both PMF and ME-2 models were run for the datasets observed in the PRD. We
134 first need to determine the species input into the models. Species that may lead to high species
135 residuals or lower R^2 values between measured and model-predicted or non-meaning factors were
136 not included, such as those that fulfilled the following criteria: (1) species that were below
137 detection in more than 40% of samples; (2) species that yielded R^2 values of less than 0.4 in
138 inter-species correlation analysis; and (3) species that had little implication for pollution sources
139 and lower concentrations. Therefore, 18 species were input into the models; these species
140 accounted for 99.6% of the total measured species and included OM, EC, SO_4^{2-} , NO_3^- , NH_4^+ , Cl^- ,
141 K, Ca, Na, Mg, Al, Zn, Fe, Cd, V, Ni, Ti and Pb.

142 The application of PMF or ME-2 also depends on the estimated realistic uncertainty (u_{ij}) of
143 the individual data point of an input matrix, which determines the Q value in Eq. (2). Therefore,
144 the estimation of uncertainty is an important component of the application of these models. There
145 are many sources of uncertainty, including sampling, handling, transport, storage, preparation, and
146 testing (Leiva et al., 2012). In this study, the sources of uncertainty that contributed little to the
147 total uncertainty could be neglected. Therefore, we first considered the uncertainties introduced by
148 sampling and analysis processes, such as sampling volume, repeatability analysis and ion
149 extraction. The species uncertainties u_{ij} are estimated using Eq. (5), where \bar{u}_c is the error
150 fraction of the species, which is estimated using the relative combined error formula Eq. (6)
151 (Vazquez et al., 2008).

$$152 \quad u_{ij} = \bar{u}_c \times x_{ij} \quad (5)$$

$$153 \quad \bar{u}_c = \sqrt{\bar{u}_f^2 + \bar{u}_r^2 + \bar{u}_e^2} \quad (6)$$

154 where \bar{u}_f is the relative error of the sampling volume; \bar{u}_r is the relative error of the repeatability
155 analysis of the standard species; and \bar{u}_e is the relative error of the ion extraction of multiple
156 samples. When the concentration of the species is below the detection limit (DL), the
157 concentration values were replaced by 1/2 of DL, and the corresponding uncertainties were set at
158 5/6 of DL. Missing values were replaced by the geometric mean of the species with corresponding
159 uncertainties of 4 times their geometric mean (Polissar et al., 1998). To account for other
160 uncertainties, the estimated uncertainties (\bar{u}_c) of all species were further increased by a factor of 2.

161 2.3 Constraint setup in ME-2 modeling

162 In this study, USEPA PMF (v5.0) was first applied with the concentration matrix and
163 uncertainties matrix described above to identify the $\text{PM}_{2.5}$ sources. After examining a range of
164 factor numbers from 3 to 12, the nine-factor solution output by PMF (base run, $Q_{\text{true}}/Q_{\text{exp}}=2.5$) was
165 found to be the optimal solution, since the factor of biomass burning was not extracted in the
166 eight-factor solution while the factor of fugitive dust was separated into two non-meaningful
167 factors when more factors were set to run PMF. For the nine-factor solution, the source judgement
168 based on tracers for each factor was identical to that of the ME-2 results detailed in Section 3.2.
169 However, in Fig. S2, some factors seemed to be mixed by some unexpected components and were
170 thus overestimated. For example, the secondary sulfate and secondary nitrate factors of PMF had
171 certain species from primary particulates, such as EC, Zn, Al, K and Fe, among which EC had
172 obvious EV values of 18.7% and 9.7%, respectively; the EV value of OM in the sea salt factor

173 (which was theoretically negligible) had a high value of 6.4%, and OM accounted for 37% of the
 174 total mass of this factor; the EV value of SO_4^{2-} in the fugitive dust factor (which was theoretically
 175 negligible) had a high value of 8.6%, and the SO_4^{2-} concentration accounted for 26% of the total
 176 mass of this factor.

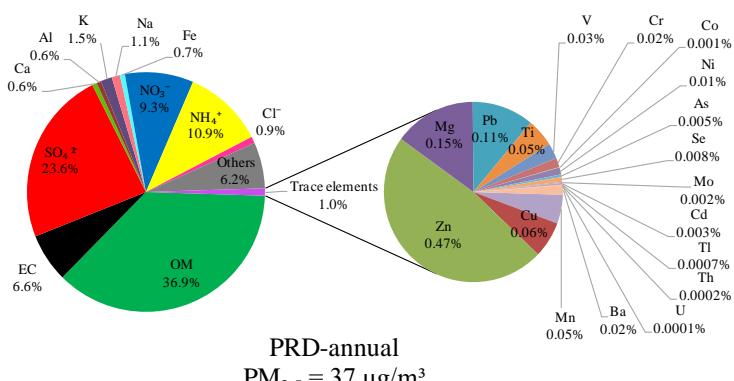
177 Therefore, using the same species concentration matrix and uncertainties matrix, we ran the
 178 ME-2 model via SoFi for 9-12 factors with the four factors constrained as described above, as
 179 shown in Table 3. The following considerations were used. Secondary sulfate and secondary
 180 nitrate factors should theoretically not contain species from primary particulates, but they may
 181 contain secondary organic matter related to the secondary conversion process of SO_2 and NO_x (He
 182 et al., 2011; Yuan et al., 2006b; Huang et al., 2014b). Therefore, the contributions of the species
 183 from primary particulates were constrained to zero in the input secondary aerosol factors, while
 184 others were not constrained. In addition, the factors of sea salt and fugitive dust in primary
 185 aerosols could be understood based on the abundance of species in seawater and the upper crust
 186 (Mason, 1982; Taylor and McLennan, 1995). As seen in Table S1, the abundances of Cl^- , Na^+ ,
 187 SO_4^{2-} , Mg^{2+} , Ca^{2+} and K^+ in sea salt were relatively high, as were the abundances of Al, Fe, Ca,
 188 Na, K, Mg and Ti in fugitive dust. Therefore, these high-abundance species were not constrained
 189 in the sea salt and fugitive dust factors, while the other species (with abundances of less than 0.1%
 190 in the particulates) were constrained to zero (Table 3). In addition, HNO_3 might react with sea salt
 191 to displace Cl^- (Huang et al., 2006); thus, NO_3^- was also not constrained in the sea salt factor.

192 **Table 3.** The constraints of factor species for ME-2 modeling.

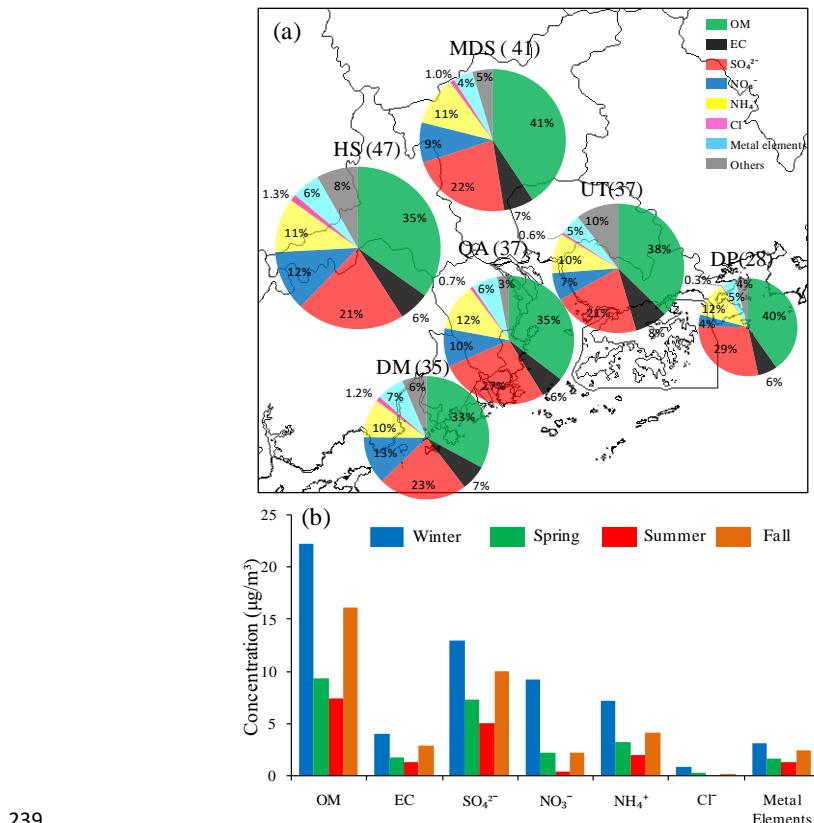
Factors	OM	EC	Cl^-	NO_3^-	SO_4^{2-}	NH_4^+	Ca	Ti	V	Ni	Zn	Cd	Pb	Na	Mg	Al	K	Fe
Secondary sulfate	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0
Secondary nitrate	0	0		0			0	0	0	0	0	0	0	0	0	0	0	0
Sea salt	0	0			0		0	0	0	0	0	0	0		0	0	0	0
Fugitive dust	0	0	0	0	0	0		0	0	0	0	0						

193

194 **3 Results and discussion**


195 **3.1 Tempo-spatial variations of $\text{PM}_{2.5}$ in the PRD**

196 The 4-month average $\text{PM}_{2.5}$ concentration for all six sites in the PRD was $37 \mu\text{g}/\text{m}^3$, which was
 197 slightly higher than the Grade II national standards for air quality (with an annual mean of $35 \mu\text{g}/\text{m}^3$). The chemical compositions of $\text{PM}_{2.5}$ in the PRD are shown in Fig. 2. OM had the highest
 198 contribution of 36.9%, suggesting severe organic pollution in the PRD. Other important
 199 components included SO_4^{2-} (23.6%), NH_4^+ (10.9%), NO_3^- (9.3%), EC (6.6%) and Cl^- (0.9%).
 200 The major metallic components included K (1.5%), Na (1.1%), Fe (0.7%), Al (0.6%), and Ca
 201 (0.6%), and trace elements accounted for 6.2%. Fig. 3a shows the spatial distribution of the $\text{PM}_{2.5}$
 202 and chemical components between six sites. The $\text{PM}_{2.5}$ pollution level in the PRD was distinctly
 203 higher in the northwestern hinterland (HS and MDS) and lower in the southern coastal areas (DM
 204 and DP). The much lower $\text{PM}_{2.5}$ concentration at the background DP ($28 \mu\text{g}/\text{m}^3$) indicated that the
 205 central PRD area was characterized by large contributions of pollution transported from outside
 206 this region. At the background DP site, the fractions of Cl^- and NO_3^- in $\text{PM}_{2.5}$ were the lowest of
 207 the six sites, i.e., 0.3% and 3.9%, respectively, suggesting that they had dominantly local sources
 208 in the PRD. The highest concentration level of $\text{PM}_{2.5}$ was observed at HS (suburban), which was
 209



210 influenced by the pollution transport of Foshan (industrial city) and Guangzhou (metropolis) under
211 the dominant northeastern wind the year. Fig. 3b shows that the seasonal variations in the major
212 components of $\text{PM}_{2.5}$ in the PRD were evidently higher in winter and lower in summer and that
213 they were correlated with monsoon characteristics. The back trajectories of the air masses (Fig. S1)
214 show that the northern monsoon prevails in winter and the southern monsoon prevails in summer
215 in the PRD. Under the northeast monsoon, the air masses mostly came from the inland and carried
216 higher concentrations of air pollutants. However, under the southwest monsoon, the air masses
217 largely originated from the South China Sea and were relatively clean. In addition, the frequent
218 rainfall and higher planetary boundary layer (PBL) in summer in the PRD also favored the
219 dispersion and removal of air pollutants (Huang et al., 2014b).

220 In 2002–2003, Hagler et al. (2006) also conducted observations and analysis of $\text{PM}_{2.5}$ in the
221 PRD and Hong Kong region, nearly 12 years before this study, as shown in Table 4. Compared
222 with Hagler's results, the $\text{PM}_{2.5}$ concentrations in this study decreased by 42% in Guangzhou
223 (MDS) and 21% in Shenzhen (UT), especially OC, EC and SO_4^{2-} , which decreased significantly
224 by 20%–47%, indicating that the measures taken to desulfurize coal-fired power plants, improve
225 the fuel standards of motor vehicles and phase-out yellow label vehicles have played important
226 roles in improving the air quality in the PRD region (People's Government of Guangdong
227 Province, 2012). Compared with the $\text{PM}_{2.5}$ concentrations reported by other cities in China in
228 recent years, the $\text{PM}_{2.5}$ concentrations in urban Guangzhou and Shenzhen in this study were
229 63%–75% lower than those in Beijing and Tianjin in northern China, Hainan in eastern China, and
230 Deyang in western China. However, the $\text{PM}_{2.5}$ concentrations in urban Guangzhou and Shenzhen
231 observed in this study were clearly higher than those in famous mega-cities in developed countries,
232 such as Paris, London, and Los Angeles, while they were similar to those of Santiago and Incheon.
233 It should be highlighted that the higher concentration of SO_4^{2-} in the urban atmosphere of the
234 PRD is one of the major reasons leading to the higher degree of $\text{PM}_{2.5}$ pollution in the PRD
235 compared to those in developed cities.

236
237
238
Fig. 2. Chemical composition of annual average $\text{PM}_{2.5}$ in the PRD region.

239

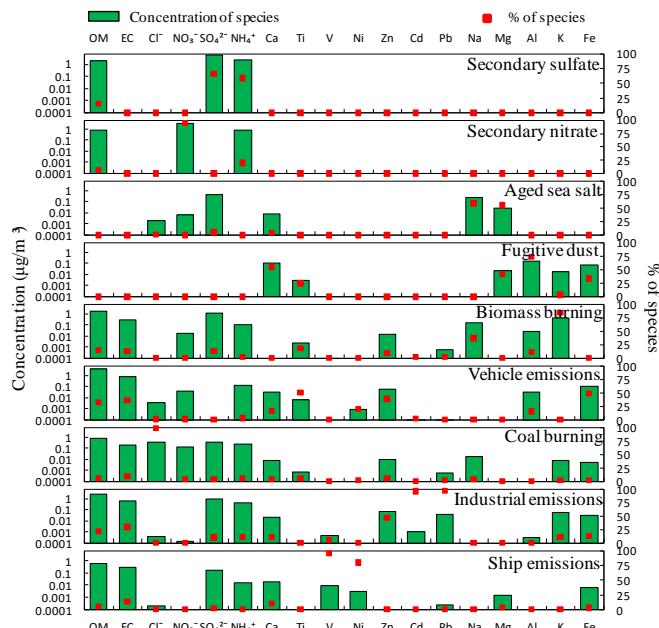
240 **Fig. 3.** The spatial distributions (a) and seasonal variations (b) of the PM_{2.5} chemical compositions in the PRD
241 (unit in brackets: $\mu\text{g}/\text{m}^3$).

242

243 **Table 4.** The comparison of the major chemical compositions of PM_{2.5} in typical cities (unit: $\mu\text{g}/\text{m}^3$).

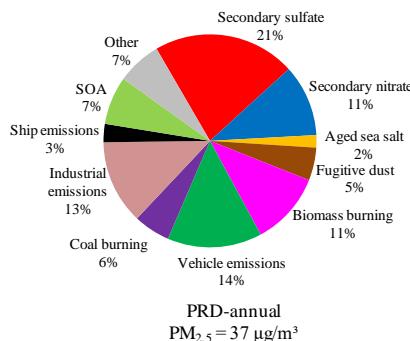
Cities	Periods	PM _{2.5}	OC	EC	SO ₄ ²⁻	NO ₃ ⁻	NH ₄ ⁺	References
Zhuhai (DM)	2015.1–2015.11	35	6.4	2.3	8.1	4.4	3.6	This study
Zhuhai (QA)		37	7.2	2.2	9.9	3.5	4.4	
Jiangmen (HS)		47	9.0	2.8	9.8	5.6	5.0	
Guangzhou (MDS)		41	9.3	2.7	9.2	3.7	4.6	
Shenzhen (UT)		37	7.8	3.0	8.0	2.6	3.7	
Shenzhen (DP)		28	6.2	1.8	8.0	1.1	3.3	
Hong Kong (Urban)	2002.10–2003.6	34.3	6.6	1.9	9.3	1.0	2.5	Hagler et al., 2006
Shenzhen (Urban)		47.1	11.1	3.9	10.0	2.3	3.2	
Guangzhou (Urban)		70.6	17.6	4.4	14.7	4.0	4.5	
Beijing	2012.6–2013.4	112	17	6	24	20	16	Wang et al., 2015a
Wuqing/Tianjin	2012.11–2013.7	148.9	14.1	0.6	24.2	19.6	8.5	Zhou et al., 2016
Haining/Zhejiang		109.6	9	1.4	16.5	13.9	6.1	
Deyang/Sichuan		121.5	13.8	1.4	21.6	10.2	6.3	
Paris/France	2009.9–2010.9	14.8	3.0	1.4	2.0	2.9	1.4	Bressi et al., 2013

London/United Kingdom	2003.12–2005.4	31.0	5.6	1.6	2.8	3.5	2.1	Rodríguez et al., 2007
Los Angeles/United States	2002–2013	17.1	2.2	1.3	2.7	4.9	0.1	Hasheminassab et al., 2014
Santiago/Chile	2013.3–2013.10	40	12.1	4.3	1.9	7.1	3.3	Villalobos et al., 2015
Incheon/Korea	2009.6–2010.5	42	7.9	1.7	5.1	4.6	3.7	Choi et al., 2012


244

245 **3.2 Source apportionment of PM_{2.5} using ME-2**

246 The solutions of 9–12 factors of the ME-2 were modeled with the four factors constrained in
 247 Table 3, using the SoFi tool, an implementation of ME-2 (Canonaco et al., 2013). Again, the
 248 nine-factor solution provided the most reasonable source profiles, since non-interpretable factors
 249 were produced (e.g., a Ti-high factor) when more factors were set to run ME-2. Based on the
 250 percentage explained variations (EV) and the contributed concentrations of species in each factor
 251 shown in Fig. 4, the sources of PM_{2.5} can be judged as follows: (1) the first factor was explained
 252 as secondary sulfate, which had large EV values of SO₄²⁻ and NH₄⁺. The high OM concentration
 253 was considered to represent low-volatile oxygenated organic aerosol (LV-OOA, Jimenez et al.,
 254 2009; He et al., 2011). (2) The second factor was explained as secondary nitrate, which had
 255 significant EV values of NO₃⁻ and NH₄⁺, and its high OM concentration was considered to
 256 represent semi-volatile oxygenated organic aerosol (SV-OOA, Jimenez et al., 2009; He et al.,
 257 2011). (3) The third factor was related to sea salt due to the large EV values and concentrations of
 258 Na and Mg. However, the low Cl⁻ concentration and high SO₄²⁻ concentration implied that SO₄²⁻
 259 replaced Cl⁻ during the sea salt aging process. Therefore, this factor was identified as aged sea salt
 260 (Yuan et al., 2006a). (4) The fourth factor was identified as fugitive dust due to its significant EV
 261 values of Al, Ca, Mg and Fe. In this study, the undetermined mass of O and Si in this factor was
 262 compensated using the elemental abundance in dust particles in Table S1 (Taylor and McLennan,
 263 1995). (5) The fifth factor was identified as biomass burning due to its significant characteristic
 264 value of K (Yamasoe et al., 2000). (6) The sixth factor had high concentrations and large EV
 265 values of OM and EC, as well as a certain range of EV values of Fe and Zn, which were related to
 266 tires and the brake wear of motor vehicles (Yuan et al., 2006a; He et al., 2011). Therefore, this
 267 factor was identified as vehicle emissions. (7) The seventh factor had a high EV value of Cl⁻ and
 268 certain concentrations of OM, EC, SO₄²⁻ and NO₃⁻, implying a combustion source. This factor
 269 was identified as coal burning, which was a major source of Cl⁻ in the PRD (Wang et al., 2015b).
 270 (8) The eighth factor had large EV values of Zn, Cd and Pb, and certain concentrations of OM and
 271 EC. Zn, Cd and Pb had high enrichment factors (Table S2) of 821, 4121 and 663, respectively, and
 272 were thus considered to be related to industrial emissions (Wang et al., 2015b). (9) The last factor
 273 had large EV values of V and Ni. V and Ni were predominantly derived from heavy oil
 274 combustion, and they had high enrichment factors (Table S2) of 64 and 89, respectively. Heavy oil
 275 was related to ship emissions in the PRD (Chow et al., 2002; Huang et al., 2014b). In this study,
 276 secondary organic aerosol (SOA), which was not resolved as a single factor, can be extracted from
 277 the factors of secondary sulfate and secondary nitrate in the forms of LV-OOA and SV-OOA,
 278 respectively. Therefore, in terms of the mass balance of PM_{2.5}, SOA can be calculated as the sum
 279 of LV-OOA and SV-OOA (Yuan et al., 2006b). It is easy to see that, in comparison with the PMF
 280 modeling (Fig. S2), the ME-2 modeling indeed provided a better Q_{true}/Q_{exp} (1.2) than the PMF
 281 modeling (Q_{true}/Q_{exp} = 2.5), and the EV values of tracers (e.g., SO₄²⁻, NO₃⁻, OM, EC, Cl⁻, V, Ni,
 282 Pb and Cd) were assigned more intensively. Therefore, it is concluded that the source
 283 apportionment results of ME-2 in this study were more environmentally meaningful and


284 statistically better than those of PMF modeling.

285

286 **Fig. 4.** The factor profiles and explained variations of the ME-2 modeling.

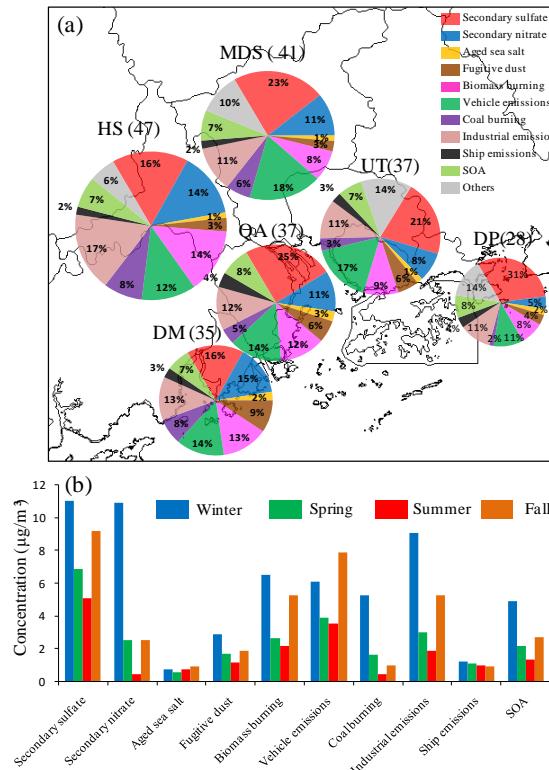
287 Fig. 5 shows the 4-month average contributions of the $\text{PM}_{2.5}$ sources in the PRD in 2015
288 based on the source apportionment of ME-2. The total secondary aerosols accounted for 39% of
289 $\text{PM}_{2.5}$ in the PRD, which were secondary sulfate (21%), secondary nitrate (11%) and SOA (7%).
290 However, the identified primary particulates contributed 54% of $\text{PM}_{2.5}$, which comprised vehicle
291 emissions (14%), industrial emissions (13%), biomass burning (11%), coal burning (6%), fugitive
292 dust (5%), ship emissions (3%) and aged sea salt (2%). Unidentified sources accounted for 7%.

293

294 **Fig. 5.** The annual average contributions of $\text{PM}_{2.5}$ sources in the PRD.

295 3.3 Tempo-spatial variations of sources in the PRD

296 The spatial distributions of the $\text{PM}_{2.5}$ sources between six sites are shown in Fig. 6a.
297 Secondary sulfate represented the largest fraction (31%) of $\text{PM}_{2.5}$ at DP, indicating that it was a
298 major air pollutant in the air mass transported to the PRD. Vehicle emissions also contributed



299 relatively highly to urban sites (18% in MDS and 17% in UT). Industrial emissions, biomass
300 burning, secondary nitrate, and coal burning contributed larger fractions of $PM_{2.5}$ at HS, which
301 could be attributed to both strong local sources (e.g., the surrounding township factories and
302 farmlands) and regional transport from upwind cities at this site. Fugitive dust, which is primarily
303 related to construction activities, was relatively high at DM (9%). The contributions of ship
304 emissions and aged sea salt were the highest at QA due to its being located on Qi-Ao Island in the
305 Pearl River Estuary, which records the greatest impact from the sea. SOA contributed similar
306 amounts (7%–8%) at all sites. It should be noted that, although QA was a background site without
307 local anthropogenic sources, its $PM_{2.5}$ level was moderate in the PRD, indicating that QA was
308 impacted by severe regional transport from the surrounding cities.

309 Fig. 6b shows the seasonal variations of the major sources of $PM_{2.5}$ in the PRD. The
310 contributions of most sources were higher in winter and lower in summer, e.g., secondary sulfate,
311 secondary nitrate, fugitive dust, biomass burning, vehicle emissions, coal burning, industrial
312 emissions and SOA; these sources were correlated with monsoon characteristics and rainfall and
313 PBL variations. In contrast, the contributions of aged sea salt and ship emissions displayed little
314 seasonal variations, which could be attributed to the fact that they played more important roles
315 only when the wind came from the sea in the south, when the background levels of other air
316 pollutants were lower.

317 Previous studies of the source apportionment of bulk $PM_{2.5}$ in the PRD have mainly focused
318 on Guangzhou, Dongguan and Shenzhen, as seen in Table 5. It can be seen that in those studies,
319 $PM_{2.5}$ was apportioned to 6–9 sources and that secondary sulfate was the prominent source,
320 although the results of different studies exhibited certain differences due to the use of different
321 models or data inputs. Compared with the study of Huang et al. (2014b) in Shenzhen in 2009, the
322 contributions of secondary sulfate and vehicle emissions in Shenzhen in this study were obviously
323 lower due to power plant desulfurization and motor vehicle oil upgrades in recent years (People's
324 Government of Shenzhen Municipality, 2013). Compared with previous studies in Guangzhou,
325 this study attained more $PM_{2.5}$ sources, which can more clearly describe the source structure of
326 $PM_{2.5}$ in this region, especially industrial emissions (11%). The PRD region has experienced a
327 high degree of industrialization; thus, industrial sources should be a major source, contributing 8.1%
328 of $PM_{2.5}$ reported by the Guangzhou Environmental Protection Bureau (2017), similar to our
329 results. Tao et al. (2017) apportioned $PM_{2.5}$ to 6 sources using PMF in Guangzhou, including some
330 mixed sources. For example, ship emissions in Tao's study may not actually represent a primary
331 source due to the significant existence of some secondary inorganics and sea salt in the source
332 profile; thus, they obtained a significantly higher contribution (17%) than that in our study. Ship
333 emissions were unidentified in Huang's study (2014a) in Guangzhou.

334

335

336 **Fig. 6.** The spatial distributions (a) and seasonal variations (b) of PM_{2.5} sources in the PRD (unit in brackets:
337 µg/m³).

338

339

Table 5. Comparison of the results of source apportionment of PM_{2.5} in the PRD.

Cities	Periods	Model	Results	References
Guangzhou	2015.1—2015.11	ME-2	Secondary sulfate (23%), secondary nitrate (11%), SOA (7%), vehicle emissions (18%), industrial emissions (11%), biomass burning (8%), coal burning (6%), fugitive dust (3%), ship emissions (2%) and aged sea salt (1%).	This study
Guangzhou	2015.1—2015.2	ME-2	Secondary sulfate (20%), secondary nitrate (16%), SOA (8%), vehicle emissions (11%), industrial emissions (13%), biomass burning (6%), coal burning (9%), fugitive dust (2%), ship emissions (1%) and aged sea salt (1%).	This study
Shenzhen	2015.1—2015.11	ME-2	Secondary sulfate (21%), secondary nitrate (8%) and SOA (7%), vehicle emissions (17%), industrial emissions (11%), biomass burning (9%), coal burning (3%), fugitive dust (6%), ship emissions (3%) and aged sea salt (1%).	This study
Guangzhou	2014.1—2014.12	PMF	Secondary sulfate and biomass burning (38%), ship emissions (17%), coal combustion (15%), traffic emissions (10%), secondary nitrate and chloride (12%), soil dust (7%).	Tao et al. (2017)
Guangzhou	2013.1	ME-2	Secondary inorganic-rich (59.0%), secondary organic-rich (18.1%), traffic (8.6%), coal burning (3.4%), biomass burning (6.7%), cooking (0.8%), dust related (3.4%).	Huang et al. (2014a)

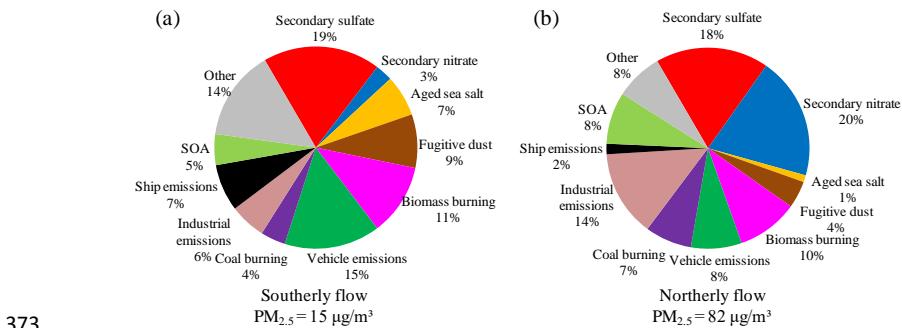
Dongguan	2013.12—2014.11	PMF	Secondary sulfate (20%), secondary nitrate (8%), SOA (10%), vehicle emissions (21%), industrial emissions (7%), biomass burning (11%), coal burning (5%), fugitive dust (8%), ship emissions (6%).	Zou et al. (2017)
Dongguan	2010.2—2012.12	PMF	Secondary sulfate (27%), secondary nitrate (19%), industrial emission (15%), biomass burning (9%) and coal combustion (9%); ship emissions/sea salt, vehicle exhaust, plastic burning and dust no more than 7%.	Wang et al. (2015b)
Shenzhen	2009.1—2009.12	PMF	Secondary sulfate (30.0%), vehicular emission (26.9%), biomass burning (9.8%), secondary nitrate (9.3%), high chloride (3.8%), heavy oil combustion (3.6%), sea salt (2.6%), dust (2.5%), metallurgical industry (2.1%).	Huang et al. (2014b)

340

341 3.4 Identification of high-emission areas in the PRD in typical meteorological conditions

342 Changes in meteorological conditions with the seasons have significant influences on the air
 343 quality in the PRD (Hagler et al., 2006). The same type of weather is often repeated. Physick et al.
 344 (2001) classified the weather over the region surrounding Hong Kong into seven categories based
 345 on surface pressure patterns, i.e., as northerly (winter monsoon), northeasterly (winter monsoon),
 346 easterly or southeasterly, trough, southerly or southwesterly (summer monsoon), cyclonic 1 and
 347 cyclonic 2 weather types. The PRD region, including Hong Kong, has nearly the similar weather
 348 patterns and similar meteorological conditions. In this study, the daily weather types during the
 349 observation period (excluding rainy days) were also classified into seven categories based on
 350 surface pressure patterns. However, according to the surface horizontal wind vectors, the PRD was
 351 mostly impacted by two types of airflow, i.e., southerly flow and northerly flow. Southerly flow,
 352 including the southeasterly and southerly or southwesterly (summer monsoon) weather types, was
 353 relatively clean and originated from the ocean (e.g., Fig. S3 and Fig. S5). Northerly flow,
 354 including the northerly (winter monsoon) and northeasterly (winter monsoon) weather types, was
 355 relatively polluted and originated from the north mainland (e.g., Fig. S4 and Fig. S6). Southerly
 356 flow and northerly flow appeared with the highest frequency in the PRD (i.e., above 80%). In this
 357 study, southerly flow days ($PM_{2.5} \leq 17 \mu\text{g}/\text{m}^3$, see Table 6) were selected to better reflect the local
 358 source regions in the PRD, and northerly flow days ($PM_{2.5} \geq 75 \mu\text{g}/\text{m}^3$, see Table 6) were selected
 359 to better understand the pollution accumulation process and regional transport characteristics of
 360 pollutants in the PRD. The sampling days for southerly flow and northerly flow are listed in Table
 361 6.

362 **Table 6.** Sampling days categorized as southerly flow and northerly flow days.


Southerly flow	Wind speed (m/s)	PM _{2.5} ($\mu\text{g}/\text{m}^3$)	Northerly flow	Wind speed (m/s)	PM _{2.5} ($\mu\text{g}/\text{m}^3$)
2015.07.01	2.6	16	2015.01.18	2.3	78
2015.07.03	3.6	17	2015.01.20	1.5	82
2015.07.15	1.9	17	2015.02.03	2	75
2015.07.23	2.6	12	2015.02.07	1.7	101
2015.07.25	2	13	2015.02.09	2.2	75
2015.07.29	1.3	12			

363

364 Fig. 7 shows the contributions of PM_{2.5} sources under southerly flow and northerly flow
 365 conditions in the PRD. Southerly flow primarily originated from the South China Sea and carried
 366 clean ocean air masses to the PRD with overall PM_{2.5} values of 15 $\mu\text{g}/\text{m}^3$. As shown in Fig. 7(a),
 367 secondary sulfate (19%), vehicle emissions (15%) and biomass burning (11%) had higher

368 contributions under southerly flow. In contrast, in northerly flow, the level of $\text{PM}_{2.5}$ was 4.5 times
 369 higher than that of southerly flow due to the transport of polluted air masses southward from the
 370 north mainland. Under northerly flow, secondary sulfate (18%) and biomass burning (10%) were
 371 still the major sources, but secondary nitrate became the dominant source of $\text{PM}_{2.5}$, accounting for
 372 20% of $\text{PM}_{2.5}$. In addition, industrial emissions also exhibited a relatively high contribution (14%).

373
 374 **Fig. 7.** Source structures of $\text{PM}_{2.5}$ in the PRD: that in southerly flow (a) and that in northerly flow (b).
 375

376 The spatial distributions of the $\text{PM}_{2.5}$ sources under southerly flow and northerly flow are
 377 shown in Fig. 8. The average concentrations of aged sea salt were similar in the summer southerly
 378 flow and winter northerly flow, reflecting the local release of surrounding sea salt. Moreover, a
 379 relatively high level of aged sea salt was observed at Qi-Ao Island (QA), which was consistent
 380 with the geographical features of the area, which faces the sea.

381 The influences of ship emissions exhibited large differences between six sites, showing
 382 significant local characteristics. The concentrations of ship emissions were the highest at DP under
 383 southerly flow, mainly due to the impact of vessels in the upwind Yantian Port, while they were
 384 the highest at QA under northerly flow, primarily due to the effects of the upwind Nansha Port, as
 385 shown in Fig. 9. Yantian Port and Nansha Port are among the ten largest ports in the world (Hong
 386 Kong Marine Department, 2012).

387 The contributions of fugitive dust also exhibited significant differences between six sites,
 388 which is consistent with local construction activities. DM is located in a newly developed zone
 389 that has experienced relatively high levels of fugitive dust during southerly flow and northerly
 390 flow due to active construction activities. Sample records indicate that the high value of fugitive
 391 dust at UT under southerly flow maybe related to its surrounding short-term road construction
 392 project, while the high value at QA under northerly flow maybe related to the operations of the
 393 adjacent Nansha Port.

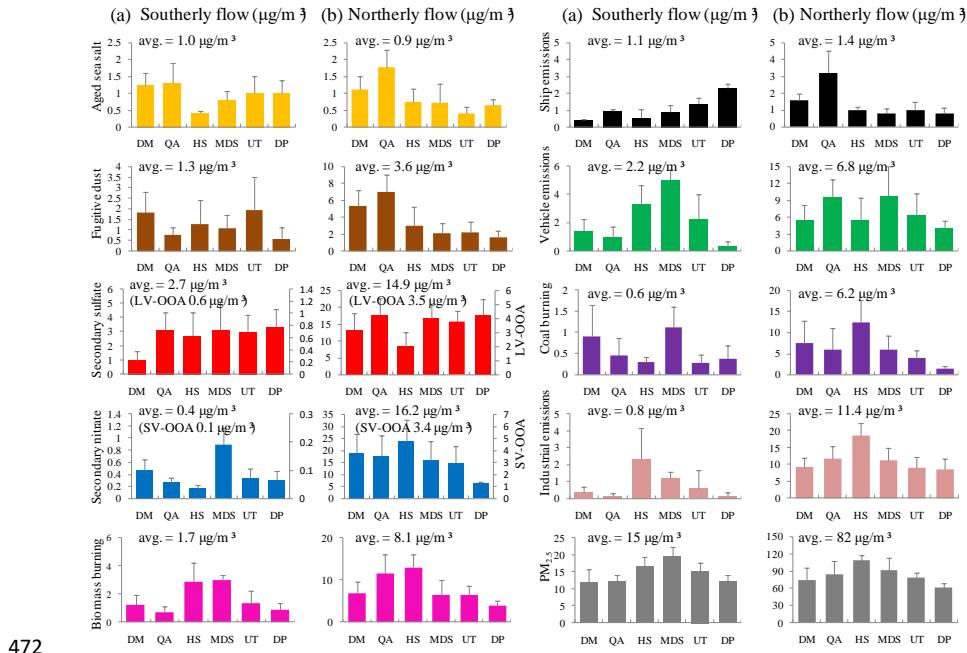
394 Motor vehicles are a common source of air pollution in the highly urbanized and
 395 industrialized PRD region. The average concentration of vehicle emissions during northerly flow
 396 was nearly 3-fold that during southerly flow. Under southerly flow, MDS, HS and UT, which are
 397 located in the hinterland of the PRD, had much higher levels of vehicle emissions than the other
 398 three sites; in particular, the highest level at the urban MDS site was caused by the high density of
 399 motor vehicles in Guangzhou. Under northerly flow, the highest concentration of vehicle
 400 emissions was still at the urban MDS site, while QA also recorded the prominent contribution of
 401 vehicle emissions, which was probably closely related to the container trucks in the neighboring

402 Nansha Port. It should be noted that the concentration of vehicle emissions at the background DP
403 site exceeded half the regional average value, approaching $4 \mu\text{g}/\text{m}^3$, thus indicating that vehicle
404 emissions had a significant impact on the regional transport of air masses from the north.

405 During southerly air flow, the background DP and QA sites and the urban UT site all
406 recorded similar concentrations of secondary sulfate, suggesting that the secondary sulfate at these
407 sites was dominated by regional transport from the southern ocean with heavy vessel transport and
408 had little to do with the urban emissions at UT. Kuang et al. (2015) also found that ship emissions
409 could be a major source of secondary sulfate in the PRD in summer. HS and MDS had
410 significantly higher concentrations than their upwind site, DM, suggesting that the area between
411 MDS and HS could be a high- SO_2 -emission area, which is consistent with the fact that this area is
412 an intensive industrial area. During northerly air flow in winter, HS and DM had lower
413 concentrations than the four upwind sites, i.e., MDS, QA, UT, and especially DP (the background
414 site), indicating that secondary sulfate could mainly be derived from regional transport from
415 outside the PRD in this season. Although the industrial area between HS and MDS could emit
416 significant amounts of SO_2 , the lower temperatures and dry air in winter did not appear to favor
417 the quick conversion of SO_2 to secondary sulfate. On the other hand, the spatial distributions and
418 source characteristics of secondary sulfate also reflected the corresponding characteristics of
419 LV-OOA.

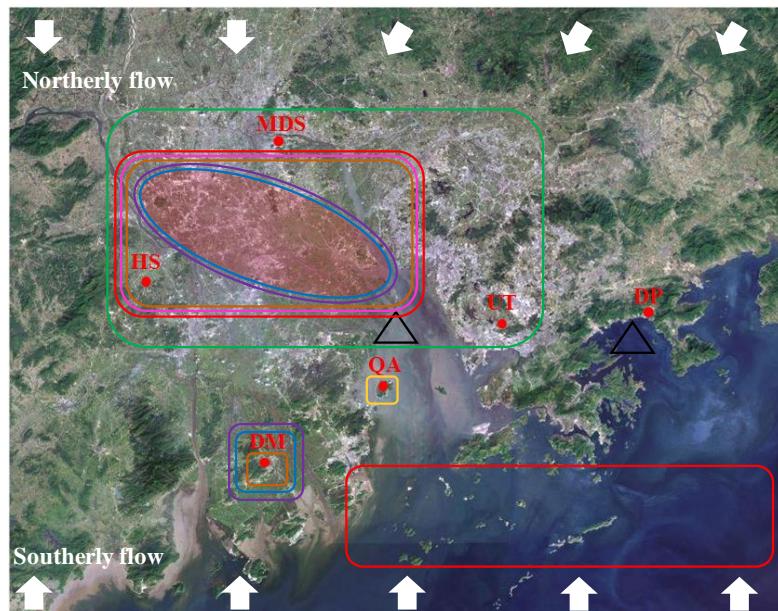
420 The spatial distributions of coal burning were significantly different between the six sites
421 during periods of both south wind and north wind, thus showing conspicuous local characteristics.
422 The contribution of coal burning was higher at MDS under southerly flow and higher at HS under
423 northerly flow. Most of the coals in the PRD were consumed by thermal power plants, but there
424 were no coal-fired power plants near the urban MDS and background DP sites. Therefore, it is
425 speculated that the high-emission areas of coal burning sources mainly exist in the region between
426 HS and MDS, as shown in Fig. 9. The distributions of coal-fired power plants in Guangdong
427 (Wang et al. 2017) reveal that some important coal-fired power plants are distributed in this region.
428 Additionally, DM also exhibited relatively obvious contributions of coal burning during southerly
429 flow and northerly flow, which is also consistent with the distribution of coal-fired power plants in
430 the vicinity.

431 The average concentration of secondary nitrate during northerly flow in winter was 40 times
432 greater than that during southerly flow in summer; this occurred not only because of the
433 unfavorable conditions of atmospheric diffusion in winter but also due to the high semi-volatility
434 of ammonium nitrate, which cannot stably exist in fine particles in the PRD during hot summer
435 (Huang et al. 2006). Under southerly flow conditions, the concentrations of secondary nitrate
436 presented prominent differences between six sites, showing local characteristics. Moreover, the
437 relatively low concentrations at the background DP site during northerly flow also indicated that
438 secondary nitrate mainly originated from the interior of the PRD. The spatial distribution
439 characteristics of secondary nitrate were very similar to those of coal burning, with the highest
440 occurring at MDS under southerly flow, the highest occurring at HS under northerly flow and
441 significantly high values occurring at DM under southerly and northerly flow, displaying that the
442 NO_x emissions produced by coal burning maybe the main reason for the high nitrate levels in
443 those areas. In addition, the spatial distributions and source characteristics of secondary nitrate
444 also reflected the corresponding characteristics of LV-OOA.


445 Under southerly flow, the influence of industrial emissions differed vastly between six sites,

446 showing obvious local characteristics. Under northerly flow, the average concentration of
447 industrial emissions reached 14-fold that of southerly flow, and the high contributions at
448 background DP suggested that regional transport probably dominated the industrial sources of fine
449 particulate matter in the PRD in winter. HS had the highest concentration of industrial emissions
450 during southerly flow and northerly flow conditions, which is consistent with the dense factories
451 present in the surrounding area (Hu, 2004; Environmental Protection Agency of Jiangmen City,
452 2017). In addition, the contribution of industrial emissions was relatively high at MDS during
453 southerly flow and relatively high at QA during northerly flow, which supports the inference that a
454 high-emission region of industrial sources was located between MDS and QA, as seen in Fig. 9.

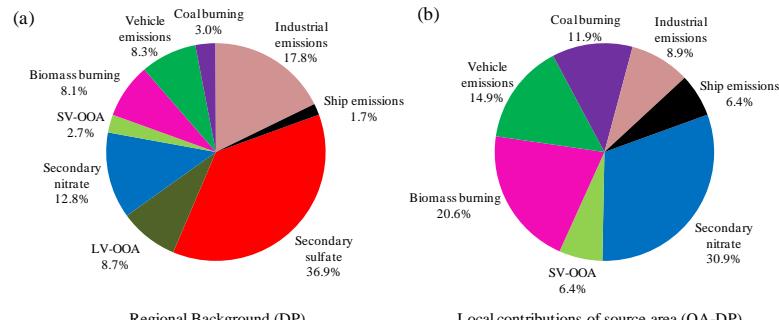
455 The impacts of biomass burning exhibited relatively large differences between six sites
456 during both south and north wind conditions, presenting somewhat local characteristics. Suburban
457 HS had relatively high biomass burning levels during southerly flow and northerly flow, which
458 were related to the presence of more farmland in its vicinity and the frequent open-burning of crop
459 residues. The concentrations of biomass burning were relatively high at the urban MDS site during
460 southerly flow and relatively high at the background QA site during northerly flow, implying that
461 there was a high-emission area of biomass burning between MDS and QA, as shown in Fig. 9.
462 Those spatial distribution characteristics of biomass burning were similar to those of industrial
463 emissions in the PRD, suggesting that not only the combustion of open-air biomass but also the
464 use of industrial biomass-boilers could make important contributions to $PM_{2.5}$ in the PRD.


465 As a summary, the central PRD area, i.e., the middle region between MDS, HS and QA (the
466 shaded region in Fig. 9), represents the most important pollutant emissions area in the PRD; these
467 emissions include SO_2 , NO_x , coal burning, biomass burning, industrial emissions and vehicle
468 emissions, thus leading to high pollution levels in the PRD. Therefore, this area is a key area for
469 pollution control in the PRD. Primary fine particulate matter and SO_2 from ship emissions had
470 significant impacts on $PM_{2.5}$ in the southern coastal area of the PRD during summer southerly
471 flow, and special attention must be paid to them.

472

473 **Fig. 8.** The average contributions of PM_{2.5} sources at six sites in the PRD: (a) those in southerly flow, (b) those in
474 northerly flow.

475


476

477 **Fig. 9.** The schematic diagram of high-emission areas in the PRD (box colors correspond to those in Fig. 8, and
478 shaded area indicates the key emission area).

479 **3.5 Distinguishing local and regional PM_{2.5} pollution in the PRD**

480 The analyses presented in Section 3.4 indicate that the secondary sulfates at the four southern
 481 coastal sites (DM, QA, UT and DP) in the PRD were almost entirely derived from the conversion
 482 of SO₂ from the emissions of ships in the southern ocean during southerly flow, contributing
 483 approximately 20% of the average PM_{2.5} (13 µg/m³) at the four sites. Considering that the ship
 484 emissions directly contributed approximately 10% of the average PM_{2.5} at the four sites, the total
 485 ship emissions contributed approximately 30% of PM_{2.5} in the southern coastal PRD area and
 486 acted as the largest source of PM_{2.5}. Under northerly flow conditions, the background DP site,
 487 which was barely affected by pollution emissions within the PRD, reflected regional transport
 488 from the north air mass outside the PRD, while the background QA site reflected the superposition
 489 effect of regional background pollution and the input of the most serious pollution area in the PRD.
 490 The consistency of the secondary sulfate concentrations at the background QA and DP sites was
 491 interpreted to reflect almost the same regional background effect during northerly flow; thus, the
 492 differences in the six anthropogenic sources between the two background sites, including
 493 secondary nitrate (and SV-OOA), biomass burning, industrial emissions, coal burning, vehicle
 494 emissions and ship emissions, could be used to trace the internal inputs from the most serious
 495 pollution area within the PRD to the downwind area. The internal inputs of six anthropogenic
 496 sources to the corresponding sources of PM_{2.5} at the background QA site were 66%, 67%, 28%,
 497 76%, 59% and 75%, respectively, and the total internal input of 37.7 µg/m³ accounted for 45% of
 498 PM_{2.5} at the background QA site, showing that the local contributions of anthropogenic pollution
 499 emissions in the key source area of the PRD were still crucial in winter but lower than the
 500 contribution of the regional background. Ignoring natural sources, such as aged sea salt and
 501 fugitive dust, under northerly flow, the contributions of other anthropogenic sources to DP were
 502 considered to represent regional background pollution, and the differences in their corresponding
 503 source concentrations between QA and DP were expected to represent the local emissions of
 504 source areas in the PRD. Therefore, the source structures in the regional background air mass and
 505 local emissions of heavy pollution sources area in the PRD are shown in Fig. 10a and b.
 506 Secondary sulfate and LV-OOA occupied the vast majority (45.6%) of the regional background air
 507 mass from the northern mainland, followed by industrial emissions (17.8%), secondary nitrate and
 508 SV-OOA (15.5%). However, the major sources between the sources output by local emissions
 509 from the heavy pollution source area of the PRD were secondary nitrate and SV-OOA (37.3%),
 510 biomass burning (20.6%), vehicle emissions (14.9%) and coal burning (11.9%). Therefore,
 511 measures implemented for the effective control of PM_{2.5} in the PRD should focus on local controls
 512 and regional joint prevention and control under winter northerly flow conditions.

514 **Fig. 10.** The PM_{2.5} source structures: (a) those in regional background air and (b) locally produced
515 pollution of the central PRD area under northerly flow.

516

517 **4 Conclusions**

518 The PRD is one of the largest agglomeration of cities in the world, and its air quality has
519 largely improved in recent decade. To reveal the current PM_{2.5} pollution characteristics on a
520 regional scale in the PRD, six sampling sites were selected to conduct 4 months of sampling and
521 chemical analysis in 2015; then, the source exploration of PM_{2.5} was performed using a novel
522 method. The conclusions are described below.

523 (1) The 4-month average PM_{2.5} concentration for all six sites in the PRD was 37 $\mu\text{g}/\text{m}^3$, of which
524 OM, SO₄²⁻, NH₄⁺, NO₃⁻, EC, metal elements and Cl⁻ contributed 36.9%, 23.6%, 10.9%, 9.3%,
525 6.6% and 0.9%, respectively. The tempo-spatial PM_{2.5} variations were generally
526 characterized as being higher in the north inland region and higher in winter.

527 (2) This study revealed that theME-2 model produced more environmentally meaningful and
528 statistically robust results of source apportionment than the traditional PMF model. Secondary
529 sulfate was found to be the dominant source of PM_{2.5} in the PRD, at 21%, followed by vehicle
530 emissions (14%), industrial emissions (13%), secondary nitrate (11%), biomass burning (11%),
531 SOA (7%), coal burning (6%), fugitive dust (5%), ship emissions (3%) and aged sea salt (2%).
532 Only aged sea salt and ship emissions did not show obvious seasonal variations.

533 (3) Based on the spatial distribution characteristics of PM_{2.5} sources under typical southerly and
534 northerly airflow conditions, the central PRD area between MDS, HS and QA is identified as a
535 key area for source emissions, including SO₂, NO_x, coal burning, biomass burning, industrial
536 emissions and vehicle emissions, and thus deserves more attention when implementing local
537 pollution control in the PRD. In addition, ship emissions should be controlled more strictly during
538 summer due to its contribution of approximately 30% of PM_{2.5} in the southern coastal area of the
539 PRD under southerly air flow.

540 (4) Under typical winter northerly flow, the contributions of anthropogenic pollution emissions in
541 the central PRD area contributed 37.7 $\mu\text{g}/\text{m}^3$ (45% of PM_{2.5}) to the regional background air.
542 Secondary sulfate (36.9%), industrial emissions (17.8%), and secondary nitrate SV-OOA (12.8%)
543 were the major PM_{2.5} sources for the PM_{2.5} transported in the regional background air mass, while
544 secondary nitrate (30.9%), biomass burning (20.6%), vehicle emissions (14.9%) and coal burning
545 (11.9%) were the major sources for the PM_{2.5} produced in the central PRD area. Therefore,
546 effective control measures of PM_{2.5} in the PRD in the future should pay more attention to both
547 local controls and regional joint prevention.

548

549 **Acknowledgments**

550 This work was supported by the National Natural Science Foundation of China (U1301234;
551 91744202), the Ministry of Science and Technology of China (Nos. 2014BAC21B01;
552 2014BAC21B03) and the Science and Technology Plan of Shenzhen Municipality
553 (JCYJ20170412150626172, JCYJ20170306164713148).

554

555 **References**

556 Bressi, M., Sciare, J., Ghersi, V., Bonnaire, N., Nicolas, J. B., Petit, J. E., Moukhtar, S., Rosso, A.,
557 Mihalopoulos, N., Férion, A.: A one-year comprehensive chemical characterisation of fine aerosol

558 (PM_{2.5}) at urban, suburban and rural background sites in the region of Paris (France), Atmos. Chem.
559 Phys., 15, 7825-7844, doi: 10.5194/acp-13-7825-2013, 2013.

560 Burnett, R. T., Pope, C. A. I., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G.,
561 Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden,
562 F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., Diver, W. R., and Cohen, A.: An Integrated Risk
563 Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate
564 Matter Exposure, Environ. Health Persp., 122, A235-A235, doi: 10.1289/ehp.122-A235, 2014.

565 Choi, J., Heo, J., Ban, S., Yi, S., Zoh, K.: Chemical characteristics of PM_{2.5} aerosol in Incheon, Korea.
566 Atmos. Environ., doi: 10.1016/j.atmosenv.2012.06.078, 583-592, 2012.

567 Chow, J. C., and Watson, J. G.: Review of PM_{2.5} and PM₁₀ Apportionment for Fossil Fuel
568 Combustion and Other Sources by the Chemical Mass Balance Receptor Model, Energ. Fuel., 16,
569 222-260, doi: 10.1021/ef0101715, 2002.

570 Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based
571 interface for the efficient use of the generalized multilinear engine (ME-2) for the source
572 apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6,
573 3649-3661, doi: 10.5194/amt-6-3649-2013, 2013.

574 Crippa, M., Canonaco, F., Lanz, V. A., Åijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D.,
575 Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, L.,
576 Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A. M., Kulmala, M.,
577 Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N.,
578 Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R.,
579 Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets
580 across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys.,
581 14, 6159-6176, doi: 10.5194/acp-14-6159-2014, 2014.

582 Elser, M., Huang, R., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C.,
583 Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and
584 Prévôt, A. S. H.: New insights into PM_{2.5} chemical composition and sources in two major cities in
585 China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16,
586 3207-3225, doi: 10.5194/acp-16-3207-2016, 2016.

587 Environmental Protection Agency of Jiangmen City: Key pollution sources basic information in
588 Jiangmen, http://hbj.jiangmen.gov.cn/thirdData/hbsjzx/hjjc/fs/201712/t20171218_268676.html,
589 2017.

590 Fröhlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, J. G.,
591 Aas, W., Åijälä, M., Alastuey, A., Artiñano, B., Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C.,
592 Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L.,
593 Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillón, M. C., Močnik, G., O'Dowd, C. D.,
594 Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Esteve, R., Wiedensohler,
595 A., Baltensperger, U., Sciare, J., and Prévôt, A. S. H.: ACTRIS ACSM intercomparison – Part 2:
596 Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located
597 aerosol mass spectrometers, Atmos. Meas. Tech., 8, 2555-2576, doi: 10.5194/amt-8-2555-2015,
598 2015.

599 Gao, B., Guo, H., Wang, X., Zhao, X., Ling, Z., Zhang, Z., and Liu, T.: Tracer-based source
600 apportionment of polycyclic aromatic hydrocarbons in PM_{2.5} in Guangzhou, southern China, using
601 positive matrix factorization (PMF), Environ. Sci. Pollut. R., 20, 2398-2409, doi:

602 10.1007/s11356-012-1129-0, 2013.

603 604 Guangzhou Environmental Protection Bureau: The Results of Source apportionment on PM_{2.5} in
Guangzhou in 2016,
<http://www.gz.gov.cn/gzgov/s5837/201706/1dc25be6dd14dc6ab6506e0a5383745.shtml>, 2017.

605 606 Hagler, G., Bergin, M., Salmon, L., Yu, J., Wan, E., Zheng, M., Zeng, L., Kiang, C., Zhang, Y., and
607 Lau, A.: Source areas and chemical composition of fine particulate matter in the Pearl River Delta
608 region of China, *Atmos. Environ.*, 40, 3802-3815, doi: 10.1016/j.atmosenv.2006.02.032, 2006.

609 610 Hasheminassab, S., Daher, N., Ostro, B. D., and Sioutas, C.: Long-term source apportionment of
611 ambient fine particulate matter (PM2.5) in the Los Angeles Basin: A focus on emissions reduction
from vehicular sources, *Environ. Pollut.*, 193, 54-64, doi: 10.1016/j.envpol.2014.06.012, 2014.

612 613 He, L., Huang, X., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R., and Zhang, Y.: Submicron aerosol
614 analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China
615 using high-resolution aerosol mass spectrometry, *J. Geophys. Res.-Atmos.*, 116, doi:
10.1029/2010JD014566, 2011.

616 617 Hong Kong Marine Department: Ranking of container ports of the world,
https://www.mardep.gov.hk/publication/pdf/portstat_2_y_b5c.pdf, 2012.

618 619 Hu, Z. Y.: Studies on the Discharging and Distribution of Heavy Metal Pollution in the Pearl River
620 Delta, Doctoral dissertation, Graduate School of the Chinese Academy of Sciences (Guangzhou
Institute of Geochemistry), 2004.

621 622 Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S.
623 M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
624 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z.,
625 Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol
626 contribution to particulate pollution during haze events in China, *Nature*, 514, 218-222, doi:
10.1038/nature13774, 2014a.

627 628 Huang, X. F., Hui, Y., Gong, Z. H., Xiang, L., He, L. Y., Zhang, Y. H., and Min, H.: Source
629 apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China,
Sci. China Earth Sci., 57, 1352-1362, doi: 10.1007/s11430-013-4686-2, 2014b.

630 631 Huang, X., Yu, J. Z., He, L., and Yuan, Z.: Water-soluble organic carbon and oxalate in aerosols at a
632 coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms, *J.
633 Geophys. Res.-Atmos.*, 111, doi: 10.1029/2006JD007408, 2006.

634 635 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S., Zhang, Q., Kroll, J. H., Decarlo, P.
F., Allan, J. D., Coe, H., and Ng, N. L.: Evolution of organic aerosols in the atmosphere, *Science*,
326, 1525-1529, doi: 10.1126/science.1180353, 2009.

636 637 Kuang, B. Y., Lin, P., Huang, X. H. H., and Yu, J. Z.: Sources of humic-like substances in the Pearl
638 River Delta, China: positive matrix factorization analysis of PM2.5 major components and source
639 markers, *Atmos. Chem. Phys.*, 15, 1995-2008, doi: 10.5194/acp-15-1995-2015, 2015.

640 641 Leiva G., M. A., Araya, M. C., Alvarado, A. M., and Seguel, R. J.: Uncertainty estimation of anions
642 and cations measured by ion chromatography in fine urban ambient particles (PM2.5), *Accredit.
643 Qual. Assur.*, 17, 53-63, doi: 10.1007/s00769-011-0844-4, 2012.

644 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air
645 pollution sources to premature mortality on a global scale, *Nature*, 525, 367-371, doi:
10.1038/nature15371, 2015.

646 Liu, J., Li, J., Zhang, Y., Liu, D., Ding, P., Shen, C., Shen, K., He, Q., Ding, X., and Wang, X.: Source

646 apportionment using radiocarbon and organic tracers for PM_{2.5} carbonaceous aerosols in
647 Guangzhou, South China: contrasting local- and regional-scale haze events, Environ. Sci. Technol.,
648 48, 12002, doi: 10.1021/es503102w, 2014.

649 Mason, B., Principles of Geochemistry, 2nd edition, John Wiley and Sons, 1982.

650 Ministry of Environmental Protection: Report on the State of the Environment in China 2015,
651 <http://www.zhb.gov.cn/hjzl/zghjzkbg/lnzghjzkbg/201606/P020160602333160471955.pdf>, 2016.

652 Nanfang Daily: PM_{2.5} level fluctuations down in PRD region in the past decade,
653 http://epaper.southcn.com/nfdaily/html/2016-01/03/content_7504954.htm, 2016.

654 Paatero, P., and Tapper, U.: Positive matrix factorization: A non - negative factor model with optimal
655 utilization of error estimates of data values, Environmetrics, 5, 111-126, doi:
656 10.1002/env.3170050203, 1994.

657 Paatero, P.: The Multilinear Engine—A Table-Driven, Least Squares Program for Solving Multilinear
658 Problems, Including the n-Way Parallel Factor Analysis Model, J. Comput. Graph. Stat., 8, 854-888,
659 doi: 10.1080/10618600.1999.10474853, 1999.

660 People's Government of Guangdong Province: Major Pollutants Emission Reduction
661 implementation plan during the 12th Five-year Plan in Guangdong Province,
662 http://zwgk.gd.gov.cn/006939748/201212/t20121219_359131.html, 2012.

663 People's Government of Shenzhen Municipality: Air quality improvement plan in Shenzhen,
664 http://zwgk.gd.gov.cn/007543382/201309/t20130930_407564.html, 2013.

665 Physick, W. L., and Goudey, R.: Estimating an annual-average RSP concentration for Hong Kong
666 using days characteristic of the dominant weather patterns, Atmos. Environ., 35, 2697-2705, doi:
667 10.1016/S1352-2310(00)00413-1, 2001.

668 Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., and Sisler, J. F.: Atmospheric aerosol over
669 Alaska: 2. Elemental composition and sources, J. Geophys. Res.-Atmos., 103, 19045 - 19057, 1998.

670 Reyes-Villegas, E., Green, D. C., Priestman, M., Canonaco, F., Coe, H., Præst, A. S. H., and Allan, J.
671 D.: Organic Aerosol source apportionment in London 2013 with ME-2: exploring the solution space
672 with annual and seasonal analysis, Atmos. Chem. Phys., 16, 15545-15559, doi:
673 10.5194/acp-16-15545-2016 , 2016.

674 Rodríguez, S., Van Dingenen, R., Putaud, J.-P., Dell'Acqua, A., Pey, J., Querol, X., Alastuey, A.,
675 Chinery, S., Ho, K.-F., Harrison, R., Tardivo, R., Scarnato, B., and Gemelli, V.: A study on the
676 relationship between mass concentrations, chemistry and number size distribution of urban fine
677 aerosols in Milan, Barcelona and London, Atmos. Chem. Phys., 7, 2217-2232, doi:
678 10.5194/acp-7-2217-2007 , 2007.

679 Sarnat, J. A., Marmur, A., Klein, M., Kim, E., Russell, A. G., Sarnat, S. E., Mulholland, J. A., Hopke, P.
680 K., and Tolbert, P. E.: Fine Particle Sources and Cardiorespiratory Morbidity: An Application of
681 Chemical Mass Balance and Factor Analytical Source-Apportionment Methods, Environ. Health
682 Persp., 116, 459-66, doi: 10.1289/ehp.10873, 2008.

683 Tan, J., Duan, J., Ma, Y., He, K., Cheng, Y., Deng, S., Huang, Y., and Si-Tu, S.: Long-term trends of
684 chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014,
685 Sci. Total Environ., 565, 519-528, doi: 10.1016/j.scitotenv.2016.05.059, 2016.

686 Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen, L., Zhang, Z., Wu, Y., Xia,
687 Y., Ye, S., and Zhang, R.: Source apportionment of PM_{2.5} at urban and suburban areas of the Pearl
688 River Delta region, south China - With emphasis on ship emissions, Sci. Total Environ., 574,
689 1559-1570, doi: 10.1016/j.scitotenv.2016.08.175, 2017.

690 Taylor, S. R., and Mcleman, S. M.: The geochemical evolution of the continental crust, *Rev. Geophys.*,
691 33, 293-301, doi: 10.1029/95RG00262, 1995.

692 Vazquez, R., and Steinberg, M.: Evaluation of measurement data - Guide to the expression of
693 uncertainty in measurement, *Biotechniques*, 26, 2008.

694 Villalobos, A. M., Barraza, F., Jorquera, H., and Schauer, J. J.: Chemical speciation and source
695 apportionment of fine particulate matter in Santiago, Chile, 2013, *Sci. Total Environ.*, 512-513,
696 133-142, doi: 10.1016/j.scitotenv.2015.01.006, 2015.

697 Visser, S., Slowik, J. G., Furger, M., Zotter, P., Bukowiecki, N., Canonaco, F., Flechsig, U., Appel, K.,
698 Green, D. C., Tremper, A. H., Young, D. E., Williams, P. I., Allan, J. D., Coe, H., Williams, L. R.,
699 Mohr, C., Xu, L., Ng, N. L., Nemitz, E., Barlow, J. F., Haliotis, C. H., Fleming, Z. L., Baltensperger,
700 U., and Prévôt, A. S. H.: Advanced source apportionment of size-resolved trace elements at multiple
701 sites in London during winter, *Atmos. Chem. Phys.*, 15, 11291-11309, doi:
702 10.5194/acp-15-11291-2015 , 2015.

703 Wang, H., Tian, M., Li, X., Chang, Q., Cao, J., Yang, F., Ma, Y., He, K.: Chemical Composition and
704 Light Extinction Contribution of PM2.5 in Urban Beijing for a 1-Year Period, *Aerosol Air Qual.
705 Res.*, 15, 2200-2211, doi: 10.4209/aaqr.2015.04.0257, 2015a.

706 Wang, J., Ho, S. S. H., Ma, S., Cao, J., Dai, W., Liu, S., Shen, Z., Huang, R., Wang, G., and Han, Y.:
707 Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source
708 apportionment, *Sci. Total Environ.*, 550, 961-971, doi: 10.1016/j.scitotenv.2016.01.138 , 2016.

709 Wang, Q. Q., Huang, X. H. H., Zhang, T., Zhang, Q., Feng, Y., Yuan, Z., Wu, D., Lau, A. K. H., and
710 Yu, J. Z.: Organic tracer-based source analysis of PM2.5 organic and elemental carbon: A case study
711 at Dongguan in the Pearl River Delta, China, *Atmos. Environ.*, 118, 164-175, doi:
712 10.1016/j.atmosenv.2015.07.033, 2015b.

713 Wang, Q., Feng, Y., Huang, X. H. H., Griffith, S. M., Zhang, T., Zhang, Q., Wu, D., and Yu, J. Z.: Non
714 - polar organic compounds as PM2.5 source tracers: Investigation of their sources and degradation
715 in the Pearl River Delta, China, *J. Geophys. Res.-Atmos.*, 121, 11862-11879, doi:
716 10.1002/2016JD025315, 2017.

717 Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G.: Chemical composition of aerosol
718 particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and
719 trace elements, *Atmos. Environ.*, 34, 1641-1653, doi: 10.1016/S1352-2310(99)00329-5, 2000.

720 Yuan, Z., Lau, A., Zhang, H., Yu, J., Louie, P., and Fung, J.: Identification and spatiotemporal
721 variations of dominant PM10 sources over Hong Kong, *Atmos. Environ.*, 40, 1803-1815, doi:
722 10.1016/j.atmosenv.2005.11.030, 2006a.

723 Yuan, Z. B., Yu, J. Z., Lau, A. K. H., Louie, P. K. K., and Fung, J. C. H.: Application of positive
724 matrix factorization in estimating aerosol secondary organic carbon in Hong Kong and its
725 relationship with secondary sulfate, *Atmos. Chem. Phys.*, 6, 25-34, doi: 10.5194/acp-6-25-2006,
726 2006b.

727 Zhou, J., Xing, Z., Deng, J., and Du, K.: Characterizing and sourcing ambient PM2.5 over key
728 emission regions in China I: Water-soluble ions and carbonaceous fractions, *Atmos. Environ.*, 135,
729 20-30, doi: 10.1016/j.atmosenv.2016.03.054, 2016.

730 Zou, B. B., Huang, X. F., Zhang, B., Dai, J., Zeng, L. W., Feng, N., and He, L. Y.: Source
731 apportionment of PM2.5 pollution in an industrial city in southern China, *Atmos. Pollut. Res.*, 8,
732 1193-1202, doi: 10.1016/j.apr.2017.05.001, 2017.